1. x has been replaced with $\mathrm{x}+3$ therefore, the graph is translated

3 units LEFT

2. 2 units left means, "replace \mathbf{x} with $\mathbf{x}+\mathbf{2}$ " 4 units down means, "replace \mathbf{y} with $\mathbf{y}+4$ "

The equation then becomes $y+4=|x+2|$

- isolate y and get

$$
y=|x+2|-4
$$

3. x has been replaced with $x-3$
y has been replaced with $\mathbf{y - 6}$
The graph has been translated 3 units RIGHT and 6 units UP
4. The x-coordinate has changed from 0 to -4 which means the graph is horizontally translated 4 units LEFT \rightarrow Replace x with $\mathbf{x + 4}$

The y coordinate has changed from 0 to 2 which means the graph is also vertically translated 2 units UP \rightarrow Replace y with y-2

$$
(x+4)^{2}+(y-2)^{2}-25=0
$$

5. x has been replaced with $\mathbf{x - 5}$, therefore, the graph has been translated 5 units RIGHT
6. 2 units to the right means, "replace \mathbf{x} with $\mathbf{x}-\mathbf{2}$ "

5 units up means, "replace \mathbf{y} with $\mathbf{y}-5$ "

So we get $\quad y-5=\frac{1}{x-2} \quad \rightarrow \quad y=\frac{1}{x-2}+5$
7. y has been replaced with $\mathrm{y}+4$ which means... 4 units DOWN
8. x has been replaced with $\mathbf{x - 5}$ which means the x -coordinates have been translated $\underline{5}$ units RIGHT. The x-intercept are affected as such...
$(3+5,0)$ and $(-3+5,0)$ which gives us new x-intercepts of $\mathbf{(8 , 0)}$ and $(2,0)$
9. x has been replaced with $x-4$
y has been replaced with $\mathbf{y}-\mathbf{3}$
The graph has been translated 4 units RIGHT and 3 units UP
10. The vertical asymptote is the y-axis. This really means it is the vertical line $x=0$. A vertical asymptote of $x=4$ means we would translate the graph 4 units RIGHT. So, replace x with $\mathrm{x}-4$

$$
y=\frac{1}{x-4}
$$

11.The corner has been horizontally translated 3-(-4) or 7 units LEFT. So, replace x with $x+7$.
12.The vertices have been translated 2 units UP $(0,4) \rightarrow(0,6)$ and $(0,-4) \rightarrow(0,-2)$

Therefore, replace y with $y-2$ and get, $\frac{(y-2)^{2}}{16}-\frac{x^{2}}{4}=1$
13. B. x has been replaced with $x+2$. This means, "subtract 2 from the x-coordinate"

$$
(a, b) \rightarrow(a-2, b)
$$

14. B. Because, in order to move the graph 4 units LEFT, we must replace \mathbf{x} with $\mathrm{x}+4$. For a translation 2 units UP, we must replace y with y-2.

The equation then becomes $\mathrm{y}-\mathbf{2}=f(\mathrm{x}+4) \rightarrow \mathrm{y}=f(\mathrm{x}+4)+\mathbf{2}$ compare this to $\mathrm{y}=f(\mathrm{x}-\mathrm{a})+\mathrm{b}$ and we can see $\mathbf{a}=-4$ and $\mathbf{b}=\mathbf{2}$
15. C. For $y=(x+2)^{2}+3$ replace y with $y+2$ and get $y+2=(x+2)^{2}+3$

$$
\begin{aligned}
& y=(x+2)^{2}+3-2 \\
& y=(x+2)^{2}+1
\end{aligned}
$$

16. For $y=(x-2)^{2}$ replace x with $x-5$ and get $y=((x-5)-2)^{2}$

$$
\begin{aligned}
& y=(x-5-2)^{2} \\
& y=(x-7)^{2}
\end{aligned} \quad \text { The value of } h \text { is } 7 .
$$

17. $\mathrm{y}-5=(\mathrm{x}-3)^{2}-2 \rightarrow \mathrm{y}=(\mathrm{x}-3)^{2}-2+5 \rightarrow \mathrm{y}=(\mathrm{x}-3)^{2}+3$ This is a parabola that opens up and has been translated 3 units UP. The vertex is now at $(3,3)$ instead of $(0,0)$. The range is $\mathbf{y} \geq 3$
