Multiple Choice

1. $\underline{\mathbf{A}}$ is the only sequence that has a common ratio, therefore it is geometric. The other three sequences have common differences. They are arithmetic.
2. $\mathrm{t}_{9}=104 \longrightarrow 104=\mathrm{a}+(9-1) \mathrm{d} \longrightarrow 104=\mathrm{a}+8 \mathrm{~d}(1)$
$\mathrm{t}_{19}=224 \longrightarrow \quad 224=\mathrm{a}+(19-1) \mathrm{d} \longrightarrow \quad \underline{224=a+18 \mathrm{~d} \text { (2) }}$
subtract equation (2) from (1) $\longrightarrow-120=-10 d \longrightarrow d=12$
substitute $d=12$ into equation $(1) \longrightarrow \quad 104=a+(8)(12)$

$$
104=a+96
$$

$$
104-96=a \longrightarrow a=8
$$

Therefore, $\mathrm{t}_{29}=8+(29-1)(12)=8+(28)(12)=8+336=344 \quad$ A
3. This is a question where you have to investigate by checking each sequence. In this case we can rule out choices \mathbf{A} and \mathbf{D} because each term in both sequences ends with 5 .
Let's check choice \mathbf{C} where $\mathrm{a}=3$ and $\mathrm{r}=2$ and $\mathrm{t}_{\mathrm{n}}=6144$
Using $t_{n}=a r^{n-1}$

$$
\longrightarrow \quad \begin{array}{rlr}
\\
\quad 6144 & =(3) 2^{n-1} \\
2048 & =2^{n-1} \quad \text { but, } 2048=2^{11} \\
\therefore \quad 2^{11} & =2^{n-1} \\
\therefore \quad 11 & =n-1 \quad \text { This means that } 6144 \text { is a term in sequence } \mathbb{C}
\end{array}
$$

Short Answer

1. $d=t_{n+1}-t_{n}=-19-(-20)=-19+20=\underline{1}$
2. Use $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$, where $\mathrm{a}=-6, \mathrm{n}=15$ and $\mathrm{d}=5$

$$
\begin{aligned}
\therefore \quad \mathrm{t}_{15} & =-6+(15-1)(5) \\
& =-6+(14)(5) \\
& =-6+70 \\
& =\underline{\mathbf{6 4}}
\end{aligned}
$$

3. $\mathrm{t}_{1}=\underline{16} \quad \mathrm{t}_{2}=16+(-3)=\underline{13} \quad \mathrm{t}_{3}=13+(-3)=\underline{10} \quad \mathrm{t}_{4}=10+(-3)=\underline{\mathbf{7}}$
4. $\mathrm{t}_{5}=14.4 \longrightarrow \quad 14.4=\mathrm{a}+(5-1) \mathrm{d} \longrightarrow \quad 14.4=\mathrm{a}+4 \mathrm{~d}$ (1) $\mathrm{t}_{12}=29.1 \longrightarrow \quad 29.1=\mathrm{a}+(12-1) \mathrm{d} \longrightarrow \quad 29.1=\mathrm{a}+11 \mathrm{~d}$ (2)
subtract equation (2) from (1) $\longrightarrow-14.7=-7 d \longrightarrow d=2.1$
substitute $d=2.1$ into equation (1) $\longrightarrow \quad 14.4=a+(4)(2.1)$

$$
\begin{aligned}
14.4 & =\mathrm{a}+8.4 \\
14.4 & -8.4=\mathrm{a} \longrightarrow \mathrm{a}=6 \\
\therefore \quad \mathrm{t}_{21} & =6+(21-1)(2.1) \\
& =6+(20)(2.1) \\
& =6+42=\underline{48}
\end{aligned}
$$

5. Use $t_{n}=a+(n-1) d$ where $t_{n}=306, a=-18$, and $d=9$

$$
\begin{aligned}
\therefore \quad 306 & =-18+(n-1) 9 \\
306 & =-18+9 n-9 \\
306 & =-27+9 n \\
306+27 & =9 n \\
333 & =9 n \longrightarrow
\end{aligned}
$$

6. Use $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}) \quad$ where $\mathrm{a}=-4, \mathrm{n}=13$, and $\mathrm{d}=1.5$

$$
\begin{aligned}
\therefore \quad \mathrm{S}_{13} & =\frac{13}{2}(2(-4)+(13-1) 1.5 \\
& =6.5(-8+(12) 1.5) \\
& =6.5(-8+18) \\
& =6.5(10)=\underline{65}
\end{aligned}
$$

7. We need to determine the common difference first before using the equation $S_{n}=\frac{n}{2}(2 a+(n-1) d)$ STEP 1: Use $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$ to find d , where $\mathrm{t}_{6}=-10, a=-5$, and $\mathrm{n}=6$

$$
\begin{aligned}
\therefore \quad-10 & =-5+(6-1) d \\
-10 & =-5+5 d \\
& -10+5=5 d \\
-5 & =5 d \longrightarrow d=-1
\end{aligned}
$$

STEP 2: Now use $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$ where $\mathrm{n}=15, \mathrm{a}=-5$, and $\mathrm{d}=-1$

$$
\begin{aligned}
\therefore \mathrm{S}_{15} & =\frac{15}{2}(2(-5)+(15-1)(-1)) \\
& =7.5(-10-14)=7.5(-24)=\underline{\mathbf{- 1 8 0}}
\end{aligned}
$$

8. Use $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$ where, $\mathrm{n}=22, \mathrm{a}=4$, and $\mathrm{d}=5.5$

$$
\begin{aligned}
\therefore \mathrm{S}_{22} & =\frac{22}{2}(2(4)+(22-1)(5.5)) \\
& =11(8+(21)(5.5)) \\
& =11(8+115.5)=11(123.5)=\mathbf{1 3 5 8 . 5}
\end{aligned}
$$

9. Use $t_{n}=a r^{n-1}$ where, $t_{1}=a, t_{6}=-2430, r=3$, and $n=6$

$$
\begin{aligned}
\therefore-2430 & =a \cdot 3^{6-1} \\
-2430 & =a \cdot 3^{5} \\
-2430 & =243 a \longrightarrow \longrightarrow a=-10
\end{aligned}
$$

10. In this case we can see $\mathbf{r}=\frac{40}{80}=\frac{\mathbf{1}}{\mathbf{2}}=\underline{\mathbf{0 . 5}}, a=80$ and $\mathrm{n}=7$

$$
\begin{aligned}
\therefore \mathrm{t}_{7} & =80(0.5)^{7-1} \\
\mathrm{t}_{7} & =80(0.5)^{6} \\
\mathrm{t}_{7} & =80(0.15625)=\underline{\mathbf{1 . 2 5}}
\end{aligned}
$$

11. In order to determine the number of terms in the sequence, we need to know the ratio

$$
\begin{array}{ll}
\mathrm{t}_{4}=3 \cdot \mathrm{r}^{4-1} \longrightarrow-24=3 \cdot r^{3} \longrightarrow r=-2 \\
\text { if } \mathrm{t}_{\mathrm{n}}=-6144 \text { then } \begin{aligned}
-6144 & =3(-2)^{\mathrm{n}-1} \\
-2048 & =(-2)^{\mathrm{n}-1}
\end{aligned} \quad \text { but }-2048=(-2)^{11} \\
& (-2)^{11}=(-2)^{\mathrm{n}-1} \longrightarrow \mathbf{n} \longrightarrow \mathbf{n} \longrightarrow \mathbf{1 2}
\end{array}
$$

12. $t_{1}=2500, \quad t_{2}=2500\left(\frac{-1}{5}\right)=-500, \quad t_{3}=-500\left(\frac{-1}{5}\right)=100, \quad t_{2}=100\left(\frac{-1}{5}\right)=-\mathbf{2 0}$
13. Use the equation $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\frac{-2\left(1-2^{15}\right)}{1-2}=\underline{-65534}$
14. Use $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}, \therefore 44286=\frac{a\left(1-(-3)^{10}\right)}{1-(-3)} \longrightarrow 44286=\frac{a(-59048)}{4} \longrightarrow 4(44286)=-59048 \mathrm{a}$

$$
a=\frac{4(44286)}{-59048}=\underline{-3}
$$

15. $\mathrm{r}=\frac{256}{1024}=\frac{1}{4} \quad$ Use $\mathrm{S}_{\mathrm{n}}=\frac{a-r l}{1-r} \quad$ where, $\mathrm{a}=1024, \mathrm{r}=.25$ and $\mathrm{I}=4$

$$
\therefore \mathrm{S}_{\mathrm{n}}=\frac{1024-.25(4)}{1-.25}=\frac{1023}{.75}=1364
$$

16. Use $\mathrm{S}=\frac{a}{1-r}$ where, $\mathrm{a}=27$ and $\mathrm{r}=\frac{9}{27}=\frac{1}{3}$

$$
\therefore S=\frac{27}{1-\frac{1}{3}}=\frac{27}{\frac{2}{3}}=\underline{40.5}
$$

17. The ratio of this series is $\frac{5}{2} \quad \therefore$ this series does not have a sum because $|r|>1$
18. Use $\mathrm{S}=\frac{a}{1-r}$ where $\mathrm{a}=-5$ and $\mathrm{S}=-15 \quad \therefore-15=\frac{-5}{1-r} \longrightarrow-15(1-r)=-5$

$$
\begin{aligned}
-15+15 r & =-5 \\
15 r & =-5+15 \\
15 r & =10 \longrightarrow r=\frac{\mathbf{2}}{\mathbf{3}}
\end{aligned}
$$

19. $\mathrm{t}_{1}=-2, \quad \mathrm{t}_{2}=-2\left(\frac{2}{3}\right)=\frac{-4}{3}, \quad \mathrm{t}_{3}=\left(\frac{-4}{3}\right)\left(\frac{2}{3}\right)=\frac{-8}{9}, \quad \mathrm{t}_{4}=\left(\frac{-8}{9}\right)\left(\frac{2}{3}\right)=\frac{-16}{27}$
20. Use $t_{n}=a+(n-1) d$ where: $a=15, d=5$, and $n=8$

$$
\therefore \mathrm{t}_{8}=15+(8-1)(5)=15+7(5)=15+35=\underline{\mathbf{5 0}}
$$

21.

$$
\begin{aligned}
& \mathrm{t}_{9}=17.8 \longrightarrow \quad 17.8=\mathrm{a}+(9-1) \mathrm{d} \longrightarrow \quad \longrightarrow 17.8=\mathrm{a}+8 \mathrm{~d} \text { (1) } \\
& \mathrm{t}_{14}=15.8 \longrightarrow 15.8=\mathrm{a}+(14-1) \mathrm{d} \longrightarrow \longrightarrow 15.8=\mathrm{a}+13 \mathrm{~d} \text { (2) }
\end{aligned}
$$

subtract equation (2) from (1) $\longrightarrow \quad 2=-5 d \longrightarrow d=\frac{2}{-5}=-0.4$
substitute $d=-0.4$ into equation $(1) \longrightarrow \quad 17.8=a+(8)(-0.4)$ $17.8=a-3.2$ $17.8+3.2=\mathrm{a} \longrightarrow \mathrm{a}=21$
$\therefore \quad 11.4=21+(n-1)(-0.4) \longrightarrow 11.4=21-0.4 n+0.4 \longrightarrow 11.4=21.4-0.4 n$
$11.4-21.4=-0.4 n$
$-10=-0.4 n$
22. Use $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})$ where: $\quad \mathrm{a}=-5, \mathrm{~d}=-3$, and $\mathrm{n}=9$

$$
\therefore \mathrm{S}_{\mathrm{n}}=\frac{9}{2}(2(-5)+(9-1)(-3)=4.5(-10+8(-3))=4.5(-10-24)=4.5(-34)=-153
$$

23. Determine a, the first term, by using $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(\mathrm{a}+\mathrm{I})$ where: $\quad \mathrm{S}_{20}=350, \mathrm{n}=20, \mathrm{I}=\mathrm{t}_{20}=27$
$\therefore 350=\frac{20}{2}(a+27) \longrightarrow 350=10(a+27) \longrightarrow 350=10 a+270$

$$
\begin{aligned}
350-270 & =10 a \\
80 & =10 a \longrightarrow a=8
\end{aligned}
$$

Since the difference, $d=1$, the first 3 terms of the series are $\underline{8+9+10}$
24. Determine a by using $\mathrm{S}_{\mathrm{n}}=\frac{n}{2}(\mathrm{a}+\mathrm{I})$ where: $\mathrm{I}=\mathrm{t}_{13}=101, \mathrm{~S}_{13}=689$, and $\mathrm{n}=13$
$\therefore 689=\frac{13}{2}(a+101) \longrightarrow 689=6.5(a+101) \longrightarrow 689=6.5 a+656.5$

$$
\begin{aligned}
689-656.5 & =6.5 a \\
32.5 & =6.5 a \longrightarrow \underline{a}=\mathbf{5}
\end{aligned}
$$

25. $\mathrm{S}_{26}-\mathrm{S}_{25}=\mathrm{t}_{26} \longrightarrow-3328-(-3075)=\mathrm{t}_{26} \longrightarrow \mathrm{t}_{26}=-253$

Using $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$ we can see that $\quad-253=\mathrm{a}+(26-1)(-10)$
$-253=a+25(-10)$
$-253=a-250$

$$
-253+250=a \longrightarrow \underline{a}=-3
$$

26. $\mathrm{S}_{20}-\mathrm{S}_{19}=\mathrm{t}_{20} \longrightarrow-1760-(-1577)=\mathrm{t}_{20} \longrightarrow \mathrm{t}_{20}=-183$

Using $\mathrm{t}_{\mathrm{n}}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$ we can see that $\quad-183=\mathrm{a}+(20-1)(-10)$

$$
-183=a+19(-10)
$$

$$
-183=a-190
$$

$$
-183+190=a \longrightarrow a=7
$$

The first 4 terms of the series are $\underline{\mathbf{7}, \mathbf{- 3}, \mathbf{- 1 3}, \mathbf{- 2 3}}$
27. Use $t_{n}=a r^{n-1}$ where: $a=\$ 1450, r=1.13$, and $n=49-20=29$ years

$$
\therefore t_{n}=\$ 1450(1.13)^{9-1}=\$ 1450(1.13)^{8}=\$ 50192.97
$$

28. $r=\frac{15}{75}=0.2$ Use the equation $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}=\underline{75\left(1-0.2^{5}\right)}=\underline{93.72}$

$$
1-r \quad 1-0.2
$$

29. Given: $S_{4}=21, S_{5}=45, S_{6}=93$

$$
\begin{array}{llll}
\text { This means } & \mathrm{S}_{5}-\mathrm{S}_{4}=\mathrm{t}_{5} & \text { and } & \mathrm{S}_{6}-\mathrm{S}_{5}=\mathrm{t}_{6} \\
& 45-21=\mathrm{t}_{5} & & 93-45=\mathrm{t}_{6} \\
& \mathrm{t}_{5}=24 & & \mathrm{t}_{6}=48
\end{array}
$$

\therefore the common ratio is $48 \div \mathbf{2 4} \mathbf{=} \underline{\mathbf{2}}$
30. Use the equation $\mathrm{S}=\frac{a}{1-r}$ where: $\mathrm{a}=-5$ and $\mathrm{r}=\frac{1}{4}$

$$
\therefore S=\frac{-5}{1-\frac{1}{4}}=\frac{-5}{\frac{3}{4}}=-5 \times \frac{4}{3}=\frac{-20}{3}
$$

31. In order for a series to have a sum, the $|r|$ must be <1. The ratio of this series $\frac{1}{2} \therefore$ it has a sum.

$$
S=\frac{a}{1-r}=\frac{2}{\frac{1}{2}}=2 \times \frac{2}{1}=\underline{4}
$$

Problem

1. The cost for one ticket in section 1 is $\$ 95=a$

The cost for one ticket in section 2 is $\$ 90$
The cost for one ticket in section 3 is $\$ 85 \quad \therefore$ The common difference is -5 The number of tickets, $\mathrm{n}=10$

$$
\text { Using } S_{n}=\frac{n}{2}\left(2 a+(n-1) d \quad \text { we get } \quad \begin{array}{rl}
S_{10} & =\frac{10}{2}(2(95)+(10-1)(-5) \\
& =5(190+9(-5)) \\
& =5(190-45)=5(145)=\$ 725
\end{array}\right.
$$

2.

$\mathbf{C A R}$	TRUCK
$a=\$ 44500$	$a=\$ 25000$
$r=1-0.15=0.845$	$r=1-0.075=0.925$
$n=10(n o t(n-1)$ years because n is the number	$n=10$
of years passed)	
$t_{n}=a r^{n}=44500(0.845)^{10}=\$ 8258.99$	$t_{n}=a r^{n}=25000(0.925)^{10}=\$ 11464.56$

The Truck is worth more.
3. Use $\mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{1-r}$ where: $\mathrm{S}_{\mathrm{n}}=-635, \mathrm{r}=2$, and $\mathrm{n}=7$

$$
-635=\frac{a\left(1-2^{7}\right)}{1-2} \longrightarrow-635=\frac{a(-127)}{-1} \longrightarrow 635=-127 a \longrightarrow a=-5
$$

4. a) If $t_{n}=-5\left(\frac{-1}{9}\right)^{n-1}$

$$
\begin{aligned}
& \mathrm{t}_{1}=-5\left(\frac{-1}{9}\right)^{1-1}=-5\left(\frac{-1}{9}\right)^{0}=-5(1)=-5 \\
& \left.\mathrm{t}_{2}=-5\left(\frac{-1}{9}\right)^{2-1}=-5\left(\frac{-1}{9}\right)^{1}=-5\left(\frac{-1}{9}\right)\right)=\frac{\mathbf{5}}{9} \\
& \left.\mathrm{t}_{3}=-5\left(\frac{-1}{9}\right)^{3-1}=-5\left(\frac{-1}{9}\right)^{2}=-5\left(\frac{1}{81}\right)\right)=\frac{-5}{81} \\
& \left.\mathrm{t}_{4}=-5\left(\frac{-1}{9}\right)^{4-1}=-5\left(\frac{-1}{9}\right)^{3}=-5\left(\frac{-1}{729}\right)\right)=\frac{5}{729}
\end{aligned}
$$

b) The common ratio of this series is $r=\frac{-1}{9}$, Since $|r|<1$ this series CONVERGES
c) $S=\frac{-5}{1-\frac{-1}{9}}=\frac{-5}{\frac{10}{9}}=-5 \times \frac{9}{10}=\frac{-4.5}{}$
5. The first three terms of this series are $2(5)+3=13$

$$
\begin{aligned}
& 2(6)+3=15 \\
& 2(7)+3=17
\end{aligned}
$$

We can see this is an arithmetic series, where $a=13, d=2$, and $n=25-5+1=21$ terms

$$
\therefore \text { use } \mathrm{S}_{21}=\frac{21}{2}(2(13)+(21-1)(2)=10.5(26+(20)(2))=10.5(26+40)=10.5(66)=\underline{693}
$$

6. Total vertical distance travelled is $2 \times \frac{10}{1-0.75}-10 \mathrm{~m}=2 \times \frac{10}{.25}-10 \mathrm{~m}=2 \times 40-10 \mathrm{~m}=\underline{\mathbf{7 0}} \mathrm{m}$
7. Use $\mathrm{S}_{\mathrm{n}}=\frac{a\left(1-r^{n}\right)}{1-r}$ where: $\mathrm{S}_{12}=6265.65, \mathrm{r}=\frac{7}{5}$, and $\mathrm{n}=12$

$$
\mathrm{S}_{12}=\frac{a\left(1-\frac{7}{5}^{12}\right)}{1-\frac{7}{5}} \longrightarrow 6265.65=\frac{a\left(1-\frac{7}{5}^{12}\right)}{-\frac{2}{5}} \longrightarrow \frac{6265.65\left(-\frac{2}{5}\right)}{\left(1-\frac{7}{5}^{12}\right)}=\mathrm{a}
$$

$a=45.00 \mathrm{~cm}$

