Pre-Calc. 12

Multiple Choice

1. <u>A</u> is the only sequence that has a common ratio, therefore it is *geometric*. The other three sequences have common differences. They are *arithmetic*.

2.	$t_9 = 104 \longrightarrow$	104 = a + (9-1)d →	104 = a + 8d ①
	$t_{19} = 224 \longrightarrow$	224 = a + (19-1)d→	<u>224 = a + 18d ②</u>
	subtract eo	quation $@$ from $\mathbb{O} \longrightarrow $	- 120 = - 10d → d = 12
	substitute d = 12 into	equation $ \longrightarrow$	104 = a + (8)(12)
			104 = a + 96
			104 – 96 = a → a = 8

<u>Therefore, $t_{29} = 8 + (29-1)(12) = 8 + (28)(12) = 8 + 336 = 344$ A</u>

3. This is a question where you have to investigate by checking each sequence. In this case we can rule out choices **A** and **D** because each term in both sequences ends with 5.

Let's check choice \mathbf{C} where a = 3 and r = 2 and t_n = 6144

Using $t_n = ar^{n-1}$ \longrightarrow 6144 = (3)2ⁿ⁻¹ 2048 = 2ⁿ⁻¹ but, 2048 = 2¹¹ \therefore 2¹¹ = 2ⁿ⁻¹ \therefore 11 = n-1 This means that 6144 is a term in sequence <u>C</u>

Short Answer

1. $d = t_{n+1} - t_n = -19 - (-20) = -19 + 20 = \frac{1}{2}$

2. Use
$$t_n = a + (n-1)d$$
, where $a = -6$, $n = 15$ and $d = 5$
 $\therefore t_{15} = -6 + (15-1)(5)$
 $= -6 + (14)(5)$
 $= -6 + 70$
 $= \frac{64}{2}$

3. $t_1 = \frac{16}{10}$ $t_2 = 16 + (-3) = \frac{13}{13}$ $t_3 = 13 + (-3) = \frac{10}{10}$ $t_4 = 10 + (-3) = \frac{7}{10}$

4.
$$t_5 = 14.4 \longrightarrow 14.4 = a + (5 - 1)d \longrightarrow 14.4 = a + 4d \oplus$$

 $t_{12} = 29.1 \longrightarrow 29.1 = a + (12 - 1)d \longrightarrow 29.1 = a + 11d \oplus$
subtract equation \oplus from $\oplus \longrightarrow -14.7 = -7d \longrightarrow d = 2.1$

substitute $d = 2.1$ into equation $\oplus \longrightarrow -14.4 = a + (4)(2.1)$
 $14.4 = a + 8.4$
 $14.4 =$

6. Use
$$S_n = \frac{n}{2} (2a + (n-1)d)$$
 where $a = -4$, $n = 13$, and $d = 1.5$
 $\therefore S_{13} = \frac{13}{2} (2(-4) + (13-1)1.5)$
 $= 6.5 (-8 + (12)1.5)$
 $= 6.5 (-8 + 18)$
 $= 6.5 (10) = \frac{65}{5}$

7. We need to determine the common difference first *before* using the equation $S_n = \frac{n}{2} (2a + (n-1)d)$ STEP 1: Use $t_n = a + (n-1)d$ to find d, where $t_6 = -10$, a = -5, and n = 6 $\therefore -10 = -5 + (6-1)d$

$$-10 = -5 + 5d$$

 $-10 + 5 = 5d$
 $-5 = 5d \longrightarrow d = -1$

STEP 2: Now use $S_n = \frac{n}{2} (2a + (n-1)d)$ where n = 15, a = -5, and d = -1 $\therefore S_{15} = \frac{15}{2} (2(-5) + (15 - 1)(-1))$ = 7.5 (-10 - 14) = 7.5 (-24) = -180

8. Use $S_n = \frac{n}{2} (2a + (n-1)d)$ where, n = 22, a = 4, and d = 5.5

$$\therefore S_{22} = \frac{22}{2} (2(4) + (22-1)(5.5))$$

= 11 (8 + (21)(5.5))
= 11 (8 + 115.5) = 11 (123.5) = **1358.5**

9. Use $t_n = ar^{n-1}$ where, $t_1 = a$, $t_6 = -2430$, r = 3, and n = 6

•

$$-2430 = a \cdot 3^{6-1} -2430 = a \cdot 3^5 -2430 = 243a ------→ a = -10$$

10. In this case we can see
$$\mathbf{r} = \frac{40}{80} = \frac{1}{2} = \underline{0.5}$$
, $a = 80$ and $n = 7$
 $\therefore t_7 = 80 (0.5)^{7-1}$
 $t_7 = 80 (0.5)^6$
 $t_7 = 80 (0.15625) = \underline{1.25}$

11. In order to determine the number of terms in the sequence, we need to know the ratio

$$t_{4} = 3 \cdot r^{4-1} \longrightarrow -24 = 3 \cdot r^{3} \longrightarrow -8 = r^{3} \longrightarrow r = -2$$

if $t_{n} = -6144$ then $-6144 = 3(-2)^{n-1}$
 $-2048 = (-2)^{n-1}$ but $-2048 = (-2)^{11}$
 $(-2)^{11} = (-2)^{n-1} \longrightarrow 11 = n -1 \longrightarrow n = 12$
12. $t_{1} = 2500$, $t_{2} = 2500 \left(\frac{-1}{5}\right) = -500$, $t_{3} = -500 \left(\frac{-1}{5}\right) = 100$, $t_{2} = 100 \left(\frac{-1}{5}\right) = -20$
13. Use the equation $S_{n} = \frac{a(1-r^{n})}{1-r} = \frac{-2(1-2^{15})}{1-2} = \frac{-65534}{1-r}$
14. Use $S_{n} = \frac{a(1-r^{n})}{1-r}$, \therefore 44286 = $\frac{a(1-(-3)^{10})}{1-(-3)} \longrightarrow$ 44286 = $\frac{a(-59048)}{4} \longrightarrow$ 4(44286) = -59048a
 $a = \frac{4(44286)}{-59048} = \frac{-3}{2}$

15.
$$r = \frac{256}{1024} = \frac{1}{4}$$
 Use $S_n = \frac{a - rl}{1 - r}$ where, $a = 1024$, $r = .25$ and $l = 4$

$$\therefore S_{n} = \frac{1024 - .25(4)}{1 - .25} = \frac{1023}{.75} = \frac{1364}{.75}$$

16. Use
$$S = \frac{a}{1-r}$$
 where, $a = 27$ and $r = \frac{9}{27} = \frac{1}{3}$

$$\therefore S = \frac{27}{1 - \frac{1}{3}} = \frac{27}{\frac{2}{3}} = \frac{40.5}{\frac{2}{3}}$$

17. The ratio of this series is $\frac{5}{2}$: this series does not have a sum because $|\mathbf{r}| > 1$

18. Use
$$S = \frac{a}{1-r}$$
 where $a = -5$ and $S = -15$ $\therefore -15 = \frac{-5}{1-r} \longrightarrow -15(1-r) = -5$
-15 + 15r = -5
15r = -5 + 15

15 r = 10
$$\longrightarrow$$
 r = $\frac{2}{3}$
19. $t_1 = -2$, $t_2 = -2 \left(\frac{2}{3}\right) = \frac{-4}{3}$, $t_3 = \left(\frac{-4}{3}\right) \left(\frac{2}{3}\right) = \frac{-8}{9}$, $t_4 = \left(\frac{-8}{9}\right) \left(\frac{2}{3}\right) = \frac{-16}{27}$

20. Use $t_n = a + (n-1)d$ where: a = 15, d = 5, and n = 8

$$\therefore t_{8} = 15 + (8-1)(5) = 15 + 7(5) = 15 + 35 = 50$$
21. $t_{9} = 17.8 \longrightarrow 17.8 = a + (9 - 1)d \longrightarrow 17.8 = a + 8d ①$

$$t_{14} = 15.8 \longrightarrow 15.8 = a + (14 - 1)d \longrightarrow 15.8 = a + 13d ②$$
subtract equation ② from ① $\longrightarrow 2 = -5d \longrightarrow d = \frac{2}{-5} = -0.4$
substitute $d = -0.4$ into equation ① $\longrightarrow 17.8 = a + (8)(-0.4)$

$$17.8 = a - 3.2$$

$$17.8 + 3.2 = a \longrightarrow a = 21$$

$$\therefore 11.4 = 21 + (n - 1)(-0.4) \longrightarrow 11.4 = 21 - 0.4n + 0.4 \longrightarrow 11.4 = 21.4 - 0.4n$$

$$11.4 - 21.4 = -0.4n$$

$$-10 = -0.4n$$

$$n = 25$$

22. Use $S_n = \frac{n}{2} (2a + (n-1)d)$ where: a = -5, d = -3, and n = 9

$$\therefore S_n = \frac{9}{2} (2(-5) + (9 - 1)(-3) = 4.5 (-10 + 8(-3)) = 4.5 (-10 - 24) = 4.5 (-34) = -153$$

23. Determine a, the first term, by using $S_n = \frac{n}{2} (a + l)$ where: $S_{20} = 350$, n = 20, $l = t_{20} = 27$

$$\therefore 350 = \frac{20}{2} (a + 27) \longrightarrow 350 = 10 (a + 27) \longrightarrow 350 = 10a + 270$$
$$350 - 270 = 10a$$

80 = 10a -----→ a = 8

Since the difference, d = 1, the first 3 terms of the series are 8 + 9 + 10

24. Determine **a** by using $S_n = \frac{n}{2}(a + I)$ where: $I = t_{13} = 101$, $S_{13} = 689$, and n = 13

$$\therefore 689 = \frac{13}{2} (a + 101) \longrightarrow 689 = 6.5 (a + 101) \longrightarrow 689 = 6.5a + 656.5$$

689 - 656.5 = 6.5a

32.5 = 6.5a ------→ <mark>a = 5</mark>

25. $S_{26} - S_{25} = t_{26} \longrightarrow -3328 - (-3075) = t_{26} \longrightarrow t_{26} = -253$ Using $t_n = a + (n-1)d$ we can see that -253 = a + (26-1)(-10) -253 = a + 25(-10) -253 = a - 250 $-253 + 250 = a \longrightarrow a = -3$ 26. $S_{20} - S_{19} = t_{20} \longrightarrow -1760 - (-1577) = t_{20} \longrightarrow t_{20} = -183$ Using $t_n = a + (n-1)d$ we can see that -183 = a + (20-1)(-10) -183 = a + 19(-10) -183 = a - 190 $-183 + 190 = a \longrightarrow a = 7$

The first 4 terms of the series are 7, -3, -13, -23

27. Use $t_n = ar^{n-1}$ where: a = \$1450, r = 1.13, and n = 49 - 20 = 29 years

 \therefore t_n = \$1450 (1.13)⁹⁻¹ = \$1450 (1.13)⁸ = \$50 192.97

28.
$$r = \frac{15}{75} = 0.2$$
 Use the equation $S_n = \frac{a(1 - r^n)}{1 - r} = \frac{75(1 - 0.2^5)}{1 - r} = \frac{93.72}{1 - r}$

29. Given: $S_4 = 21$, $S_5 = 45$, $S_6 = 93$

 \therefore the common ratio is 48 ÷ 24 = **2**

30. Use the equation S = $\frac{a}{1-r}$ where: a = -5 and r = $\frac{1}{4}$

$$\therefore S = \frac{-5}{1 - \frac{1}{4}} = \frac{-5}{\frac{3}{4}} = -5 x \frac{4}{3} = \frac{-20}{3}$$

31. In order for a series to have a sum, the |r| must be < 1. The ratio of this series is $\frac{1}{2}$ \therefore it has a sum.

$$S = \frac{a}{1-r} = \frac{2}{\frac{1}{2}} = 2 \times \frac{2}{1} = \frac{4}{\frac{4}{2}}$$

<u>Problem</u>

 The cost for one ticket in section 1 is \$95 = a The cost for one ticket in section 2 is \$90 The cost for one ticket in section 3 is \$85 ∴ The common difference is - 5 The number of tickets, n = 10

Using
$$S_n = \frac{n}{2} (2a + (n - 1)d)$$
 we get $S_{10} = \frac{10}{2} (2(95) + (10 - 1)(-5))$
= $5(190 + 9(-5))$
= $5(190 - 45) = 5(145) = \frac{5725}{2}$

2.

_

The Truck is worth more.

3. Use
$$S_n = \frac{a(1-r^n)}{1-r}$$
 where: $S_n = -635$, $r = 2$, and $n = 7$
 $-635 = \frac{a(1-2^7)}{1-2} \longrightarrow -635 = \frac{a(-127)}{-1} \longrightarrow 635 = -127a \longrightarrow a = -5$

4. a) If
$$t_n = -5(\frac{-1}{9})^{n-1}$$

 $t_1 = -5(\frac{-1}{9})^{1-1} = -5(\frac{-1}{9})^0 = -5(1) = -5$
 $t_2 = -5(\frac{-1}{9})^{2-1} = -5(\frac{-1}{9})^1 = -5(\frac{-1}{9})) = \frac{5}{9}$
 $t_3 = -5(\frac{-1}{9})^{3-1} = -5(\frac{-1}{9})^2 = -5(\frac{1}{81})) = \frac{-5}{81}$
 $t_4 = -5(\frac{-1}{9})^{4-1} = -5(\frac{-1}{9})^3 = -5(\frac{-1}{729})) = \frac{5}{729}$

b) The common ratio of this series is $r = \frac{-1}{9}$, Since |r| < 1 this series CONVERGES

c)
$$S = \frac{-5}{1 - \frac{-1}{9}} = \frac{-5}{\frac{10}{9}} = -5 \times \frac{9}{10} = \frac{-4.5}{10}$$

5. The first three terms of this series are 2(5) + 3 = 13
 2(6) +3 = 15
 2(7) + 3 = 17

We can see this is an arithmetic series, where a = 13, d = 2, and n = 25 - 5 + 1 = 21 terms

∴ use
$$S_{21} = \frac{21}{2} (2(13) + (21 - 1)(2) = 10.5 (26 + (20)(2)) = 10.5 (26 + 40) = 10.5 (66) = \frac{693}{2}$$

6. Total vertical distance travelled is $2 \times \frac{10}{1-0.75} - 10 \text{ m} = 2 \times \frac{10}{.25} - 10 \text{ m} = 2 \times 40 - 10 \text{ m} = \frac{70 \text{ m}}{.25}$

7. Use
$$S_n = \frac{a(1-r^n)}{1-r}$$
 where: $S_{12} = 6265.65$, $r = \frac{7}{5}$, and $n = 12$

$$S_{12} = \frac{a(1 - \frac{7}{5}^{12})}{1 - \frac{7}{5}} \longrightarrow 6265.65 = \frac{a(1 - \frac{7}{5}^{12})}{-\frac{2}{5}} \longrightarrow \frac{6265.65(-\frac{2}{5})}{(1 - \frac{7}{5}^{12})} = a$$

$$a = 45.00 \text{ cm}$$