PRACTICE EXERCISES

- 1. The graph of $y = (3x)^3$ is the graph of $y = x^3$ stretched horizontally about the y-axis by a factor of $\frac{1}{3}$
- 2. The graph of $y = 2x^2 + 2$ is the graph of $y = x^2 + 1$ stretched <u>Vertically</u> about the x-axis by a factor of 2
- 3. Given $y = x^2 + 3x$, write an equation that would
 - a) stretch the graph of this function horizontally about the y-axis by a factor of $\frac{1}{2}$ Ye place \times with $2\times$ $y = (2\times)^2 + 3(2\times)$ \longrightarrow $y = 4\times^2 + 6\times$
 - b) stretch the graph of this function vertically about the x-axis by a factor of $\frac{1}{2}$ replace y with 2y $2y = x^2 + 3x \longrightarrow y = \frac{1}{2}(x^2 + 3x)$
- 4. The graph of y = f(x) contains the point (6, 3). What corresponding point is on the graph of
 - a) y = f(3x)? horiz. comp. factor $\frac{1}{3}$ ① replace y with -y ② vert. exp. factor 2 (6, -6)
- 5. For y = |x + 3|, write an equation that represents the graph of this function stretched horizontally about the y-axis by a factor of 2 and that reflects it in the y-axis.

- 7. The graph of $y = \left(\frac{1}{2}x\right)^3$ is the graph of $y = (x)^3$ stretched horizontally about the y-axis by a factor of 2

n en la falla messa e Parkana. Parkai ili **kushiyawa ki**anda en ku

8. The graph of $x^2 + y^2 = 9$ is a circle with centre (0, 0) and radius 3. Sketch $\left(\frac{1}{2}x\right)^2 + \left(\frac{1}{2}y\right)^2 = 9$, showing the x- and y-intercepts. Give the domain and range of this new relation.

- 9. In general, ky = f(x) is the graph of y = f(x) stretched vertically about the x axis by a factor of
- 10. For $y = \sqrt{x}$, write the equation that represents the graph of this function stretched horizontally about the y-axis by a factor of 2 and vertically about the x-axis by a factor of 3.

- 11. The graph of $y = 8x^3$ could be the graph of $y = x^3$, if it is stretched
 - a) vertically about the x-axis by a factor of 8
 - b) horizontally about the y-axis by a factor of $\frac{1}{2}$ $\frac{\text{THINK...}}{2}$ $y = (2x)^{\frac{2}{3}}$
- 12. If the graph of y = f(x) contains the point (a, b), the graph of y = 2f(3x) contains the corresponding point $(\sqrt[a]{3}, \sqrt{2b})$.
- 13. The graph of $x^2 + y^2 = 16$ is a circle with centre (0, 0) and radius 4. Sketch the graph of $x^2 + (2y)^2 = 16$, showing the x- and y-intercepts. Give the domain and range of this new relation.

- 14. The graph of y = f(x) has a point (a, b). What corresponding point is on the graph of y = -2f(x)?
- 15. If the graph of $y = \sqrt{x}$ is stretched horizontally about the y-axis by a factor of 4 and reflect in the y-axis, then what is the equation of the transformed graph?

16. If the graph of y = |x| - 2 is stretched vertically about the x-axis by a factor of 3 and reflect in the x-axis, then what is equation of the transformed graph?

replace y with
$$\frac{y}{2}$$
 and $\frac{y}{2}$ with $-\frac{y}{2}$

$$3 - \frac{1}{3} = |x|-2 \qquad y = -3(|x|-2) \qquad y = -3|x|+6$$

17. If the graph of $y = x^3 + 3$ is stretched horizontally about the y-axis by a factor of $\frac{1}{2}$, stretched vertically about the x-axis by a factor of 2, and reflect in the x-axis, then what is equation of the transformed graph?

$$y = (2x)^3 + 3$$

$$-\frac{1}{2}y = (2x)^3 + 3$$
 $y = 2(2x)^3 - 6$

If the graph of $y = \frac{1}{x-2}$ is stretched vertically about the x-axis by a factor of $\frac{1}{3}$, stretched horizontally stretch about the y-axis by a factor of 2, and reflect in the y-axis, then what is equation of the transformed graph?

of the transformed graph:
$$3y = \frac{1}{x-2} \qquad 3y = \frac{2}{-3(x+4)}$$

For each of questions 19 to 24, describe how the graph of the first function can be transformed to give the graph of the second function.

- vert. exp. factor 2 reflection in x-axis
- 19. y = |x|, y = -2|x|horiz exp. factor 3 reflection in x-axis
- 21. $y = \frac{2}{x+2}$, $4y = \frac{-2}{x+2}$ yert comp. factor 4 ref. in x-axis ref. in x-axis
- 22. $y = x^3 x$, $-2y = (3x)^3 (3x)$ horiz comp. fact. /3 vert. comp fact. /2

23.
$$y=3^x$$
, $y=\frac{2}{3^x}$ $y=2\cdot 3$

24. $y=\frac{1}{x+3}$, $y=\frac{-2}{3x+3}$

ref. in y-axis

Vert. exp. factor 2

horiz. comp. factor $\frac{1}{3}$

Western en en la company association of the very factor 2

For each of questions 25 to 28, the graph that is not labelled is obtained by a stretch of the graph of the function that is labelled. Write the equation for each of the functions represented by the graphs that are not labelled.

