Solutions

1. D.

Break $\mathbf{y}=f(3 \mathbf{x}-6)$ down to $\mathbf{y}=f(3(\mathbf{x}-2))$. From this we can see a horizontal compression by a factor of $\frac{1}{3}$ and a horizontal translation of 2 units RIGHT.
2. C.

If $(6,-5)$ is a point on $\mathrm{y}=f(\mathrm{x})$ then for $\mathrm{y} \bar{\gamma}-f(2(\mathrm{x}+2))-3$ there is a

- Reflection in the x-axis (y is replaced with -y)

$$
\begin{equation*}
(6,-5) \longrightarrow \tag{6,5}
\end{equation*}
$$

- Horizontal compression by a factor of $/ \frac{1}{2}$
$(6,5) \longrightarrow(3,5)$
- Horizontal translation 2 units LEFT
$(3,5) \longrightarrow(1,5)$
- Vertical translation 3 units DOWN
$(1,5) \longrightarrow$
$(1,2)$

3. B.
$\mathrm{y}=f(2 \mathrm{x}+10) \longrightarrow \mathrm{y}=f(2(\mathrm{x}+5)$

- Horizontal compression by a factor of $\frac{1}{2}$
$(4,-3) \longrightarrow(2,-3)$
- Horizontal translation 5 units LEFT
$(2,-3) \longrightarrow(-3,-3)$

4. C.

Horizontal translation 5 units LEFT so (a, b) $\longrightarrow(\mathrm{a}-5, \mathrm{~b})$
Vertical translation 1 unit DOWN so $(a-5, b) \longrightarrow(\mathbf{a}-\mathbf{5}, \mathbf{b}-\mathbf{1})$
5. D.

Horizontal translation 2 units LEFT
Vertical translation 5 units DOWN
6. B.

$$
\begin{aligned}
& \mathrm{y}=\frac{1}{3} x-7 \longrightarrow \mathrm{x}=\frac{1}{3} y-7 \longrightarrow \mathrm{x}+7=\frac{1}{3} y \longrightarrow 3(\mathrm{x}+7)=\mathrm{y} \\
& 3 \mathrm{x}+21=\mathrm{y} \longrightarrow \boldsymbol{f}^{-1}(\mathrm{x})=\mathbf{3 x}+\mathbf{2 1}
\end{aligned}
$$

7. A .

$$
\mathrm{y}=f(\mathrm{x}) \longrightarrow \text { horiz. comp. } \mathrm{y}=f(3 \mathrm{x}) \xrightarrow[\text { horiz. translation }]{\longrightarrow} \mathrm{y}=f(3(\mathrm{x}+2)) \longrightarrow \mathrm{y}=f(3 \mathrm{x}+\mathbf{6}))
$$

8. B.

$$
\mathrm{y}=\sqrt{x} \longrightarrow \mathrm{y}=\sqrt{\frac{1}{4} x} \longrightarrow \mathrm{y}=\sqrt{\frac{1}{4}(x-3)}
$$

9. C.
$\mathrm{y}=-f(2 \mathrm{x})+3$ shows a reflection in the x -axis $(4,-5) \longrightarrow(4,5)$ a horiz. comp. by a factor of $\frac{1}{2}(4,5) \longrightarrow(2,5)$ and a vert. trans. 3 units UP $(2,5) \longrightarrow(2,8)$
10. B.

Two things have happened with this graph

- It has been reflected in the y-axis (replace x with -x)
- It has then been translated 8 units RIGHT (replace x with $\mathrm{x}-8$)

11. C.
$4 \mathrm{y}=f(-\mathrm{x})$ represents a vertical compression of a factor of $\frac{1}{4}$ which means $(6,-12)$ becomes $(6,-3)$ and since x has been replaced with $(-x)$ $(6,-3)$ becomes $(\mathbf{- 6}, \mathbf{- 3})$
12. B.

Two things have happened with this graph

- It has been horizontally expanded by a factor of 2 (replace x with $\frac{1}{2} \mathrm{x}$)
- It has then been translated 1 unit RIGHT (replace x with $\mathrm{x}-1$)

13. D.

Following the order given:
$(9,-12)$ becomes $(27,-12)$
$(27,-12)$ becomes $(27,12)$
$(27,12)$ becomes $(27,7)$
$(27,7)$ becomes $(7,27)$
14. C or D.

The inverse of $\mathrm{y}=\mathrm{x}^{2}$ is $\mathrm{x}=\mathrm{y}^{2}$
Isolate this for y and get $\mathrm{y}=\sqrt{x}$ but, $\sqrt{x}=\mathrm{x}^{1 / 2}$
So, $\ldots . y=x^{1 / 2}$
15. C.

$$
f(\mathrm{x})=2 \mathrm{x}+3 \longrightarrow \mathrm{y}=2 \mathrm{x}+3 \longrightarrow \mathrm{x}=2 \mathrm{y}+3 \longrightarrow \mathrm{x}-3=2 \mathrm{y}
$$

$$
\frac{x-3}{2}=y \longrightarrow f^{-1}(\mathrm{x})=\frac{x-3}{2}
$$

16.

The vertical expansion by a factor of 3 transforms the point $(0,2)$ to $(0,6)$.

Next, the horizontal translation 2 units right transforms $(0,6)$ to $(2,6)$

The points $(-2,0)$ and $(2,0)$, at the base, move to $(0,0)$ and $(4,0)$ respectively
17.

First: Reflect the portion of the graph below the x -axis, above the x-axis.

Second: Translate the graph 2 units UP
18. The y-coordinate is only affected. The vertical expansion by a factor of 2 transforms the point to $(6,20)$. The reciprocal of the function simply requires us to take the reciprocal of the y-coordinate which gives us $\left(\mathbf{6}, \frac{\mathbf{1}}{\mathbf{2 0}}\right)$
19.

Two things have happened with this graph

- It has been horizontally compressed by a factor of $\frac{1}{2}$ (replace x with 2 x)

$$
\mathrm{y}=f(2 \mathrm{x})
$$

- It has then been translated 3 units RIGHT (replace x with $\mathrm{x}-3$)

$$
\mathrm{y}=f(2(\mathrm{x}-3))
$$

The final equation would be $\quad \mathbf{y}=\boldsymbol{f}(\mathbf{2 x} \mathbf{x} \mathbf{6})$
20.

The solution is obtained by work "backwards".
If $(2,-8)$ is on the graph of $\mathrm{y}=f(\mathrm{x}-3)+4$, then the x -coordinate and y-coordinate on $\mathrm{y}=f(\mathrm{x})$ are $(2-3,-8-4) \longrightarrow(-\mathbf{1}, \mathbf{- 1 2})$
$\mathrm{y}=f(\mathrm{x})$ underwent a horizontal translation of 3 units left so we must move 3 units right to determine the original x -coordinate $\mathrm{y}=f(\mathrm{x})$ underwent a vertical translation of 4 units up so we must move 4 units down to determine the original y -coordinate
21.

A maximum value on $\mathrm{y}=f(\mathrm{x})$ represents the y -coordinate. For $\mathrm{y}=\frac{1}{3} f\left(\frac{1}{2} \mathrm{x}\right)$ the y -coordinate undergoes a vertical compression by a factor of $\frac{1}{3}$.
Therefore the maximum value of $\mathrm{y}=\frac{1}{3} f\left(\frac{1}{2} \mathrm{x}\right)$ is 3 .
22.

$$
\begin{aligned}
& f(\mathrm{x})=\frac{3 x}{x+1} \longrightarrow \mathrm{y}=\frac{3 x}{x+1} \longrightarrow \mathrm{x}=\frac{3 y}{y+1} \longrightarrow \mathrm{x}(\mathrm{y}+1)=3 \mathrm{y} \\
& \mathrm{xy}+\mathrm{x}=3 \mathrm{y} \longrightarrow \mathrm{x}=3 \mathrm{y}-\mathrm{xy} \longrightarrow \mathrm{y} \longrightarrow \mathrm{y}(3-\mathrm{x}) \longrightarrow \frac{x}{3-\mathrm{x}}=\mathrm{y}
\end{aligned}
$$

$$
f^{-1}(x)=\frac{x}{3-x}
$$

23.

First: Vertically expand the shape by a factor of 2
Second: Vertically translate the shape 3 units DOWN.
24.

Reflect the graph in the line $\mathrm{y}=\mathrm{x}$. This can be done by switching the x and y coordinates of key points and then plot them.
$(-5,0)$ reflects to $(0,-5)$
$(-3,2)$ reflects to $(2,-3)$
$(0,2)$ reflects to $(2,0)$
$(2,0)$ reflects to $(0,2) \ldots \ldots$ and then we connect the dots.

