Pre-Calc. 12

3.1Polynomials

In this section we will develop an understanding of the characteristics of a polynomial functions so we can sketch their graphs.

- A polynomial is an expression in the form

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}, a_{n} \neq 0
$$

Polynomials in standard form are written in descending order of exponents
Do examples 1 and 2 on page 113

- Shape of Polynomial Graphs are continuous (no breaks or sharp corners)

Do examples 3 and 4 on page 114

- Polynomials of the form $f(x)=x^{n}$ and $-f(x)=x^{n}$ are simply reflections of each other about the x -axis.

Do example 5 on page 114 and make a note of the end behavior of each.

Equation of polynomial	Degree of polynomial	Is it Positive or is it Negative?	Is it an Even or is it an Odd function?	End behavior
$\mathbf{y}=\mathbf{x}$	1	positive	Odd	Low left High right
$\mathbf{y}=\mathbf{- x}$	1	negative	Odd	High left Low right
$\mathbf{y}=\mathbf{x}^{\mathbf{2}}$	2	positive	Even	Opens UP Both ends point UP
$\mathbf{y}=-\mathbf{x}^{\mathbf{2}}$	2	negative	Even	Opens Down Both ends point DowN
$\mathbf{y}=\mathbf{x}^{\mathbf{3}}$				
$\mathbf{y}=-\mathbf{x}^{\mathbf{3}}$				
$\mathbf{y}=\mathbf{x}^{4}$				
$\mathbf{y}=-\mathbf{x}^{4}$				
$\mathbf{y}=\mathbf{x}^{\mathbf{5}}$				
$\mathbf{y}=-\mathbf{x}^{\mathbf{5}}$				

$\mathbf{y}=\mathbf{x}^{\mathbf{6}}$				
$\mathbf{y}=-\mathbf{x}^{\mathbf{6}}$				

What generalization can you make?
Now relate your generalization to the table on p. 115 Comparing $f(x)= \pm x^{n}$ slope of graphs

- The End Behavior of Polynomial is simply determined by the leading coefficient of a polynomial written in Standard Form. You can see this by looking at page 116.
- The Constant Value of a Polynomial Function is the y-intercept.

For example, the y-intercept for $5 x^{3}+3 x^{2}-x+7$ is at $(0,7)$
Do Example 6 on p. 117

- Zeros of Polynomial Functions are also known as ROOTS, X-INTERCEPTS, and SOLUTIONS \quad Do Example 7 on p. 117

A Polynomial Function of Degree n has at most, n solutions
A Polynomial Function of Degree n has at most, n roots
A Polynomial Function of Degree n has at most, n x-intercepts
Do Example 8 on p. 118

- Turning Points

If a polynomial has n turning points, it has a minimum degree of $n+1$ (p. 118 explains this quite well)

- Multiplicity

When one solution is repeated r times, the function is said to have a solution of multiplicity r.

Do example 9 on p. 118

